Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Med Sci Monit ; 28: e936292, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1732487

ABSTRACT

In the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has driven investigational studies and controlled clinical trials on antiviral treatments and vaccines that have undergone regulatory approval. Now that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants may become endemic over time, there remains a need to identify drugs that treat the symptoms of COVID-19 and prevent progression toward severe cases, hospitalization, and death. Understanding the molecular mechanisms of SARS-CoV-2 infection is extremely important for the development of effective therapies against COVID-19. This review outlines the key pathways involved in the host response to SARS-CoV-2 infection and discusses the potential role of antioxidant and anti-inflammatory pharmacological approaches for the management of early mild-to-moderate COVID-19, using the examples of combined indomethacin, low-dose aspirin, omeprazole, hesperidin, quercetin, and vitamin C. The pharmacological targets of these substances are described here for their possible synergism in counteracting SARS-CoV-2 replication and progression of the infection from the upper respiratory airways to the blood, avoiding vascular complications and cytokine and bradykinin storms.


Subject(s)
COVID-19 Drug Treatment , Host Microbial Interactions/drug effects , SARS-CoV-2/drug effects , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/therapeutic use , Endemic Diseases , Host Microbial Interactions/physiology , Humans , Pharmacological Phenomena/physiology , SARS-CoV-2/pathogenicity
2.
J Virol ; 96(6): e0000222, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1673349

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the largest RNA genome, approximately 30 kb, among RNA viruses. The DDX DEAD box RNA helicase is a multifunctional protein involved in all aspects of RNA metabolism. Therefore, host RNA helicases may regulate and maintain such a large viral RNA genome. In this study, I investigated the potential role of several host cellular RNA helicases in SARS-CoV-2 infection. Notably, DDX21 knockdown markedly accumulated intracellular viral RNA and viral production, as well as viral infectivity of SARS-CoV-2, indicating that DDX21 strongly restricts the SARS-CoV-2 infection. In addition, MOV10 RNA helicase also suppressed the SARS-CoV-2 infection. In contrast, DDX1, DDX5, and DDX6 RNA helicases were required for SARS-CoV-2 replication. Indeed, SARS-CoV-2 infection dispersed the P-body formation of DDX6 and MOV10 RNA helicases as well as XRN1 exonuclease, while the viral infection did not induce stress granule formation. Accordingly, the SARS-CoV-2 nucleocapsid (N) protein interacted with DDX1, DDX3, DDX5, DDX6, DDX21, and MOV10 and disrupted the P-body formation, suggesting that SARS-CoV-2 N hijacks DDX6 to carry out viral replication. Conversely, DDX21 and MOV10 restricted SARS-CoV-2 infection through an interaction of SARS-CoV-2 N with host cellular RNA helicases. Altogether, host cellular RNA helicases seem to regulate the SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 has a large RNA genome, of approximately 30 kb. To regulate and maintain such a large viral RNA genome, host RNA helicases may be involved in SARS-CoV-2 replication. In this study, I have demonstrated that DDX21 and MOV10 RNA helicases limit viral infection and replication. In contrast, DDX1, DDX5, and DDX6 are required for SARS-CoV-2 infection. Interestingly, SARS-CoV-2 infection disrupted P-body formation and attenuated or suppressed stress granule formation. Thus, SARS-CoV-2 seems to hijack host cellular RNA helicases to play a proviral role by facilitating viral infection and replication and by suppressing the host innate immune system.


Subject(s)
COVID-19 , Host Microbial Interactions , RNA Helicases , RNA, Viral , COVID-19/enzymology , Host Microbial Interactions/physiology , Humans , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Virus Replication/physiology
3.
Biochem Biophys Res Commun ; 592: 18-23, 2022 02 12.
Article in English | MEDLINE | ID: covidwho-1611627

ABSTRACT

The emergence of new SARS-CoV-2 variants poses a threat to the human population where it is difficult to assess the severity of a particular variant of the virus. Spike protein and specifically its receptor binding domain (RBD) which makes direct interaction with the ACE2 receptor of the human has shown prominent amino acid substitutions in most of the Variants of Concern. Here, by using all-atom molecular dynamics simulations we compare the interaction of Wild-type RBD/ACE2 receptor complex with that of the latest Omicron variant of the virus. We observed a very interesting diversification of the charge, dynamics and energetics of the protein complex formed upon mutations. These results would help us in understanding the molecular basis of binding of the Omicron variant with that of SARS-CoV-2 Wild-type.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Molecular Dynamics Simulation , Pandemics , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Static Electricity
4.
Biochem Biophys Res Commun ; 592: 51-53, 2022 02 12.
Article in English | MEDLINE | ID: covidwho-1611626

ABSTRACT

Omicron is a new variant of SARS-CoV-2, which is currently infecting people around the world. Spike glycoprotein, an important molecule in pathogenesis of infection has been modeled and the interaction of its Receptor Binding Domain with human ACE-receptor has been analysed by simulation studies. Structural analysis of Omicron spike glycoprotein shows the 30 mutations to be distributed over all domains of the trimeric protein, wherein the mutant residues are seen to be participating in higher number of intra-molecular interactions including two salt bridges emanating from mutant residues thereby stabilizing their conformation, as compared to wild type. Complex of Receptor Binding Domain (RBD) with human ACE-2 receptor shows seven mutations at interacting interface comprising of two ionic interactions, eight hydrogen bonds and seven Van der Waals interactions. The number and quality of these interactions along with other binding biophysical parameters suggests more potency of RBD domain to the receptor as compared to the wild type counterpart. Results of this study explains the high transmissibility of Omicron variant of SARS-CoV-2 that is currently observed across the world.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Biophysical Phenomena , COVID-19/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Molecular Dynamics Simulation , Mutation , Pandemics , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Structural Homology, Protein
5.
Biochem Biophys Res Commun ; 587: 69-77, 2022 01 08.
Article in English | MEDLINE | ID: covidwho-1540389

ABSTRACT

The clathrin coat assembly protein AP180 drives endocytosis, which is crucial for numerous physiological events, such as the internalization and recycling of receptors, uptake of neurotransmitters and entry of viruses, including SARS-CoV-2, by interacting with clathrin. Moreover, dysfunction of AP180 underlies the pathogenesis of Alzheimer's disease. Therefore, it is important to understand the mechanisms of assembly and, especially, disassembly of AP180/clathrin-containing cages. Here, we identified AP180 as a novel phosphatidic acid (PA)-binding protein from the mouse brain. Intriguingly, liposome binding assays using various phospholipids and PA species revealed that AP180 most strongly bound to 1-stearoyl-2-docosahexaenoyl-PA (18:0/22:6-PA) to a comparable extent as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is known to associate with AP180. An AP180 N-terminal homology domain (1-289 aa) interacted with 18:0/22:6-PA, and a lysine-rich motif (K38-K39-K40) was essential for binding. The 18:0/22:6-PA in liposomes in 100 nm diameter showed strong AP180-binding activity at neutral pH. Notably, 18:0/22:6-PA significantly attenuated the interaction of AP180 with clathrin. However, PI(4,5)P2 did not show such an effect. Taken together, these results indicate the novel mechanism by which 18:0/22:6-PA selectively regulates the disassembly of AP180/clathrin-containing cages.


Subject(s)
Clathrin/metabolism , Docosahexaenoic Acids/metabolism , Monomeric Clathrin Assembly Proteins/metabolism , Phosphatidic Acids/metabolism , Animals , Binding Sites , Brain/metabolism , COVID-19/metabolism , COVID-19/virology , Cell Line , Clathrin/chemistry , Docosahexaenoic Acids/chemistry , Endocytosis/physiology , Host Microbial Interactions/physiology , Humans , Mice , Monomeric Clathrin Assembly Proteins/chemistry , Monomeric Clathrin Assembly Proteins/genetics , Phosphatidic Acids/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/physiology , Virus Internalization
6.
PLoS Comput Biol ; 17(11): e1009560, 2021 11.
Article in English | MEDLINE | ID: covidwho-1523396

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.


Subject(s)
COVID-19/genetics , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/virology , SARS-CoV-2/genetics , Adaptation, Physiological/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , CD13 Antigens/genetics , CD13 Antigens/physiology , Common Cold/genetics , Common Cold/virology , Computational Biology , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/physiology , Evolution, Molecular , Genomics , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Host Specificity/genetics , Host Specificity/physiology , Humans , Mammals/genetics , Mammals/virology , Phylogeny , Protein Interaction Domains and Motifs/genetics , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2/physiology , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization
7.
Biochem Biophys Res Commun ; 586: 137-142, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1520712

ABSTRACT

Nuclear pore complexes (NPC) regulate molecular traffics on nuclear envelope, which plays crucial roles during cell fate specification and diseases. The viral accessory protein NSP9 of SARS-CoV-2 is reported to interact with nucleoporin 62 (NUP62), a structural component of the NPC, but its biological impact on the host cell remain obscure. Here, we established new cell line models with ectopic NSP9 expression and determined the subcellular destination and biological functions of NSP9. Confocal imaging identified NSP9 to be largely localized in close proximity to the endoplasmic reticulum. In agreement with the subcellular distribution of NSP9, association of NSP9 with NUP62 was observed in cytoplasm. Furthermore, the overexpression of NSP9 correlated with a reduction of NUP62 expression on the nuclear envelope, suggesting that attenuating NUP62 expression might have contributed to defective NPC formation. Importantly, the loss of NUP62 impaired translocation of p65, a subunit of NF-κB, upon TNF-α stimulation. Concordantly, NSP9 over-expression blocked p65 nuclear transport. Taken together, these data shed light on the molecular mechanisms underlying the modulation of host cells during SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host Microbial Interactions/physiology , Membrane Glycoproteins/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Active Transport, Cell Nucleus , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Gene Knockdown Techniques , HeLa Cells , Humans , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Models, Biological , Nuclear Envelope/metabolism , Nuclear Envelope/virology , Nuclear Pore Complex Proteins/antagonists & inhibitors , Nuclear Pore Complex Proteins/genetics , RNA-Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factor RelA/metabolism , Viral Nonstructural Proteins/genetics
8.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1488676

ABSTRACT

A novel human coronavirus prompted considerable worry at the end of the year 2019. Now, it represents a significant global health and economic burden. The newly emerged coronavirus disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the primary reason for the COVID-19 global pandemic. According to recent global figures, COVID-19 has caused approximately 243.3 million illnesses and 4.9 million deaths. Several human cell receptors are involved in the virus identification of the host cells and entering them. Hence, understanding how the virus binds to host-cell receptors is crucial for developing antiviral treatments and vaccines. The current work aimed to determine the multiple host-cell receptors that bind with SARS-CoV-2 and other human coronaviruses for the purpose of cell entry. Extensive research is needed using neutralizing antibodies, natural chemicals, and therapeutic peptides to target those host-cell receptors in extremely susceptible individuals. More research is needed to map SARS-CoV-2 cell entry pathways in order to identify potential viral inhibitors.


Subject(s)
Coronavirus/metabolism , Host Microbial Interactions/physiology , Receptors, Coronavirus/metabolism , Antibodies, Neutralizing , Antiviral Agents/pharmacology , COVID-19 , Coronavirus/pathogenicity , Humans , Receptors, Coronavirus/physiology , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
9.
Hamostaseologie ; 41(5): 387-396, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483190

ABSTRACT

Hypercoagulability and vascular injury, which characterize morbidity in COVID-19 disease, are frequently observed in the skin. Several pathomechanisms, such as inflammation caused by angiotensin-converting enzyme 2-mediated uptake into endothelial cells or SARS-CoV-2-initiated host immune responses, contribute to microthrombus formation and the appearance of vascular skin lesions. Besides pathophysiologic mechanisms observed in the skin, this review describes the clinical appearance of cutaneous vascular lesions and their association with COVID-19 disease, including acro-ischemia, reticular lesions, and cutaneous small vessel vasculitis. Clinicians need to be aware that skin manifestations may be the only symptom in SARS-CoV-2 infection, and that inflammatory and thrombotic SARS-CoV-2-driven processes observed in multiple organs and tissues appear identically in the skin as well.


Subject(s)
COVID-19/complications , SARS-CoV-2 , Skin/blood supply , Angiotensin-Converting Enzyme 2/physiology , Antibodies, Antiphospholipid/blood , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/pathology , COVID-19/pathology , COVID-19/physiopathology , Complement Activation , Cytokines/metabolism , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Microvessels/immunology , Microvessels/pathology , Microvessels/physiopathology , Pandemics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Skin/immunology , Vasculitis/etiology , Vasculitis/pathology , Vasculitis/physiopathology , Virus Internalization
10.
Hamostaseologie ; 41(5): 379-385, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483188

ABSTRACT

In 2019 first reports about a new human coronavirus emerged, which causes common cold symptoms as well as acute respiratory distress syndrome. The virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe thrombotic events including deep vein thrombosis, pulmonary embolism, and microthrombi emerged as additional symptoms. Heart failure, myocardial infarction, myocarditis, and stroke have also been observed. As main mediator of thrombus formation, platelets became one of the key aspects in SARS-CoV-2 research. Platelets may also directly interact with SARS-CoV-2 and have been shown to carry the SARS-CoV-2 virus. Platelets can also facilitate the virus uptake by secretion of the subtilisin-like proprotein convertase furin. Cleavage of the SARS-CoV-2 spike protein by furin enhances binding capabilities and virus entry into various cell types. In COVID-19 patients, platelet count differs between mild and serious infections. Patients with mild symptoms have a slightly increased platelet count, whereas thrombocytopenia is a hallmark of severe COVID-19 infections. Low platelet count can be attributed to platelet apoptosis and the incorporation of platelets into microthrombi (peripheral consumption) and severe thrombotic events. The observed excessive formation of thrombi is due to hyperactivation of platelets caused by the infection. Various factors have been suggested in the activation of platelets in COVID-19, such as hypoxia, vessel damage, inflammatory factors, NETosis, SARS-CoV-2 interaction, autoimmune reactions, and autocrine activation. COVID-19 does alter chemokine and cytokine plasma concentrations. Platelet chemokine profiles are altered in COVID-19 and contribute to the described chemokine storms observed in severely ill COVID-19 patients.


Subject(s)
Blood Platelets/physiology , Blood Platelets/virology , COVID-19/blood , Blood Platelets/immunology , COVID-19/complications , COVID-19/immunology , Chemokines/blood , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Models, Biological , Pandemics , Platelet Activation/immunology , Platelet Activation/physiology , SARS-CoV-2/pathogenicity , Thrombosis/blood , Thrombosis/etiology
11.
Gene ; 808: 145963, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1415409

ABSTRACT

As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/genetics , SARS-CoV-2/metabolism , COVID-19/physiopathology , Computational Biology/methods , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Genome-Wide Association Study , Host Microbial Interactions/physiology , Host-Pathogen Interactions/genetics , Humans , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
12.
Virus Genes ; 57(6): 475-488, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1401067

ABSTRACT

Throughout the viral life cycle, interplays between cellular host factors and virus determine the infectious capacity of the virus. The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a great threat to human life and health. Extensive studies identified a number of host proviral and antiviral factors for SARS-CoV-2. In this review, we summarize the current understanding of the interplay between SARS-CoV-2 and cellular factors during virus entry and replication. Our review will highlight the future direction of study on the infection and pathogenesis of SARS-CoV-2, as well as novel therapeutic strategies and effective antiviral targets for COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host Microbial Interactions/physiology , SARS-CoV-2/physiology , Virus Internalization , Virus Replication , Animals , Humans , SARS-CoV-2/pathogenicity
13.
Viruses ; 13(4)2021 04 01.
Article in English | MEDLINE | ID: covidwho-1389534

ABSTRACT

Sindbis virus (SINV), a positive-sense single stranded RNA virus that causes mild symptoms in humans, is transmitted by mosquito bites. SINV reverse genetics have many implications, not only in understanding alphavirus transmission, replication cycle, and virus-host interactions, but also in biotechnology and biomedical applications. The rescue of SINV infectious particles is usually achieved by transfecting susceptible cells (BHK-21) with SINV-infectious mRNA genomes generated from cDNA constructed via in vitro translation (IVT). That procedure is time consuming, costly, and relies heavily on reagent quality. Here, we constructed a novel infectious SINV cDNA construct that expresses its genomic RNA in yeast cells controlled by galactose induction. Using spheroplasts made from this yeast, we established a robust polyethylene glycol-mediated yeast: BHK-21 fusion protocol to rescue infectious SINV particles. Our approach is timesaving and utilizes common lab reagents for SINV rescue. It could be a useful tool for the rescue of large single strand RNA viruses, such as SARS-CoV-2.


Subject(s)
Alphavirus Infections/virology , Cell Fusion , Host Microbial Interactions/physiology , Sindbis Virus/genetics , Spheroplasts , Yeasts/genetics , Animals , COVID-19 , DNA, Complementary , RNA, Viral/genetics , SARS-CoV-2 , Saccharomyces cerevisiae , Yeasts/virology
14.
Sci Rep ; 11(1): 2459, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1387462

ABSTRACT

A deeper understanding of the molecular biology of SARS-CoV-2 infection, including the host response to the virus, is urgently needed. Commonalities exist between the host immune response to viral infections and cancer. Here, we defined transcriptional signatures of SARS-CoV-2 infection involving hundreds of genes common across lung adenocarcinoma cell lines (A549, Calu-3) and normal human bronchial epithelial cells (NHBE), with additional signatures being specific to one or both adenocarcinoma lines. Cross-examining eight transcriptomic databases, we found that host transcriptional responses of lung adenocarcinoma cells to SARS-CoV-2 infection shared broad similarities with host responses to multiple viruses across different model systems and patient samples. Furthermore, these SARS-CoV-2 transcriptional signatures were manifested within specific subsets of human cancer, involving ~ 20% of cases across a wide range of histopathological types. These cancer subsets show immune cell infiltration and inflammation and involve pathways linked to the SARS-CoV-2 response, such as immune checkpoint, IL-6, type II interferon signaling, and NF-κB. The cell line data represented immune responses activated specifically within the cancer cells of the tumor. Common genes and pathways implicated as part of the viral host response point to therapeutic strategies that may apply to both SARS-CoV-2 and cancer.


Subject(s)
COVID-19/genetics , Host Microbial Interactions/physiology , SARS-CoV-2/physiology , A549 Cells , Bronchi/metabolism , COVID-19/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Immunity , Lung Neoplasms/pathology , Lung Neoplasms/virology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Transcription, Genetic , Transcriptome , Virus Replication/genetics
15.
Cell Mol Life Sci ; 78(21-22): 6735-6744, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1377320

ABSTRACT

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.


Subject(s)
COVID-19/enzymology , COVID-19/virology , Host Microbial Interactions/physiology , Kallikreins/metabolism , SARS-CoV-2 , Virus Diseases/enzymology , Animals , Asthma/etiology , Coronavirus/genetics , Coronavirus/pathogenicity , Coronavirus/physiology , Host Microbial Interactions/genetics , Humans , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Papillomavirus Infections/enzymology , Papillomavirus Infections/virology , Picornaviridae Infections/complications , Picornaviridae Infections/enzymology , Picornaviridae Infections/virology , Protein Processing, Post-Translational , Proteolysis , Rhinovirus/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Varicella Zoster Virus Infection/enzymology , Varicella Zoster Virus Infection/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Diseases/virology , Virus Internalization
16.
Virology ; 562: 142-148, 2021 10.
Article in English | MEDLINE | ID: covidwho-1331288

ABSTRACT

SARS-CoV, MERS-CoV, and potentially SARS-CoV-2 emerged as novel human coronaviruses following cross-species transmission from animal hosts. Although the receptor binding characteristics of human coronaviruses are well documented, the role of carbohydrate binding in addition to recognition of proteinaceous receptors has not been fully explored. Using natural glycan microarray technology, we identified N-glycans in the human lung that are recognized by various human and animal coronaviruses. All viruses tested, including SARS-CoV-2, bound strongly to a range of phosphorylated, high mannose N-glycans and to a very specific set of sialylated structures. Examination of two linked strains, human CoV OC43 and bovine CoV Mebus, reveals shared binding to the sialic acid form Neu5Gc (not found in humans), supporting the evidence for cross-species transmission of the bovine strain. Our findings, revealing robust recognition of lung glycans, suggest that these receptors could play a role in the initial stages of coronavirus attachment and entry.


Subject(s)
COVID-19/virology , Host Microbial Interactions/physiology , Middle East Respiratory Syndrome Coronavirus/metabolism , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Animals , Cattle , Humans , Lung/metabolism , Mannose/chemistry , Middle East Respiratory Syndrome Coronavirus/physiology , N-Acetylneuraminic Acid/chemistry , Phosphorylation , Protein Array Analysis , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology
17.
J Virol ; 95(19): e0086221, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1309804

ABSTRACT

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/physiology , Janus Kinases/metabolism , SARS-CoV-2/metabolism , Cell Line , Gene Expression Regulation , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Janus Kinase 1/metabolism , Myocytes, Cardiac , Receptor, Interferon alpha-beta/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , Virus Replication
18.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1304352

ABSTRACT

The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.


Subject(s)
COVID-19/virology , Host Microbial Interactions , Nasal Mucosa/virology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/physiopathology , Cell Differentiation , Cilia/pathology , Cilia/physiology , Cilia/virology , Furin/genetics , Furin/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Macaca , Models, Biological , Nasal Mucosa/pathology , Nasal Mucosa/physiopathology , Pandemics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Stem Cells/pathology , Stem Cells/virology , Virus Internalization , Virus Replication/genetics , Virus Replication/physiology
19.
Sci Signal ; 14(690)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299215

ABSTRACT

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Polyphosphates/pharmacology , SARS-CoV-2/drug effects , Administration, Inhalation , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/metabolism , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , In Vitro Techniques , Models, Biological , Molecular Docking Simulation , Nebulizers and Vaporizers , Polyphosphates/administration & dosage , Polyphosphates/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Domains and Motifs , Proteolysis/drug effects , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Vero Cells , Virus Replication/drug effects
20.
IUBMB Life ; 74(1): 24-28, 2022 01.
Article in English | MEDLINE | ID: covidwho-1296787

ABSTRACT

Research on oxidants and electrophiles has shifted from focusing on damage to biomolecules to the more fine-grained physiological arena. Redox transitions as excursions from a steady-state redox set point are continually ongoing in maintenance of redox balance. Current excitement on these topics results from the fact that recent research provided mechanistic insight, which gives rise to more concrete and differentiated questions. This Commentary focuses on redox eustress and the feedback restoration of steady state as concepts in active maintenance of physiological health, with brief discussion of redox stress response to viral infection, exemplified by COVID-19.


Subject(s)
COVID-19/metabolism , Homeostasis , Oxidation-Reduction , SARS-CoV-2 , COVID-19/immunology , Feedback, Physiological , Hormesis , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Immunity, Innate , Models, Biological , NF-E2-Related Factor 2/metabolism , Oxidative Stress , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL